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Marfan and Related Syndromes. Cardiovascular Risks

Main genetic tissue disorders
I Marfan syndrome

(prevalence ≈ 1 in 10,000)
I Loeys-Dietz syndrome
I Ehlers-Danlos syndrome

Aortic dissection (Center for vascular awareness)

Creative-Med-Doses
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Typical journey of a patient in France before being diagnosed with
Marfan

Prophylactic treatment for aortic dissection
There are different levels of risk for aortic dissection according to the mutation and
the phenotype of the patient.
I for high-risk patients: surgery, elective aortic root replacement
I for moderate-risk patients: pharmacological treatment, β-blockers.

Consultation with a
local physician

Multidisciplinary analyses
at the closest Marfan center
cardio, ophtalmo, skelettal

Diagnostic :
Min 6 months later
which mutation
which treatment

no

yes yes

no

Suspicion of

Marfan ?
Eligibility for
genetic sequencing ?
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Decision aid tool for screening patients

Consultation with a
local physician

Multidisciplinary analyses
at the closest Marfan center
cardio, ophtalmo, skelettal

Diagnostic :
in less time
which mutation
which treatment

proba ≤ p0

proba > p0 proba > p1

proba ≤ p1

Decision aid tool Decision aid tool

Objective
Design a decision aid tool for the two steps of the patient pathway:
I outside the specialized centers: help local physicians decide whether to

refer a patient to a reference center
I within the specialized centers: personalize the set of tests based on a

patient’s characteristics
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Data description

FBN1 control no Other TGFBRmutation categories02004006008001000120014001600

Number
 of patie

nts
Cohort description (Bichat hopsital,
Paris)
I 3,982 patients
I 19 clinical variables

I age, sex
I morphological features
I cardiovascular features
I ophthalmic features

I 5 genetic categories:
FBN1, TGFBR, Other, No, Control.

Data type and missingness
I 20 columns in total: 8 continuous, 12 categorical;
I high missing rate: only 17% of the lines are complete.
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From a classifier to a generative model

A first approach: screening as a classification problem
Learn the conditional distribution P(category | xS) for all xS , where S is a subset
of the observed variables.

Problem: P̂(category = FBN1 | age = 30,height = 1m80) = 0.55 !!

Solution: Prior distribution P on the mutation categories

category ∼ 0.9999 δcontrol + ε1 δFBN1 + ε2 δno + ε3 δother + ε4 δTGFBR

Unknown phenotype distribution p

The phenotype is represented by a vector x ∈ X ⊂ Rd.

x | age, sex, category ∼ p(x | age, sex, category)λ(dx)

where λ is a measure on X .
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From a classifier to a generative model

A classifier given by Bayes’ theorem

P(cat = c | x, age, sex) = p(x | age, sex, cat = c)P(cat = c)∑
c′ p(x | age, sex, cat = c′)P(cat = c′)

Requirements for the generative model
I handle tabular data (continuous and categorical variables)
I deal with high missing rate in the data
I be able to evaluate the probability of a given phenotype, and all the

conditional distribution probabilities

Two generative paradigms explored
I Conditional Variational Auto-Encoder (CVAE) by Vesna
I Chained Equations probabilistic neural networks (inspired from MICE) by

Antonin
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Reconstruction performances and examination recommender

Reconstruction R2 of MICE generative model

Variables R2

Span 0.99
Size 0.95
Weight 0.73
Ascending aorta 0.98
Sino-tubular 0.99
Valsalva sinus 0.77
Aortic arch 0.95
Annulus 0.43
Thumb sign 0.56
Wrist sign 0.54
Ectopia 0.18
Bifid uvula 0.15
Ogival palate 0.22
Pectus 0.16
Elbow extension 0.07

Definition of the reconstruction error

R2 = 1− error of the model
baseline error
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Recommendation of the next exam by entropy minimization

Given partial observations xS of a patient (S ( J1, dK), the next exam to be
conducted is the one minimizing the conditional entropy:

`∗ = argmin
`/∈S

E [ent(cat | xS , x`, xc)]

where ent(cat | xS , x`, xc) = −
∑
c

P(cat = c | xS , x`, xc) logP(cat = c | xS , x`, xc)
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Recommendation of the next exam by entropy minimization

Example
E [ent(cat | age = 30, sex = M, span)] < E[ent(cat | age = 30, sex = M,V. sinus)]

but E [ent(cat | age = 10, sex = M, span)] > E[ent(cat | age = 10, sex = M,V. sinus)]

0 20 40 60 80 100age6080100120140160180200220

Span

controlFBN1

0 20 40 60 80 100age
20
30
40
50
60

Valsalva
 sinus

ControlFBN1
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Conditional VAE

Preprocessing and data splitting:
I Fill missing values (NA) with 0
I Create a mask for missing values (observed =

1, unobserved = 0)
I Use StandardScaler on numerical data
I Apply One Hot Encoding for categorical data
I Split data into training, validation, and test

subsets

Model setup and training:
I Loss: Reconstruction (continuous &

categorical) + KL loss
I Annealing KL loss: Beta starts at 0, increases

to 0.1
I 600 epochs of training
I Uses Gumbel-softmax for categorical variables
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CVAE Results

Numerical features R2

Anneau 0.79
Sinus_de_valsalva 0.83
Jonction_sino_tubulaire 0.78
Aorte_ascendante 0.79
Crosse_aorte 0.82
Taille 0.91
Poids 0.79
Envergure 0.72

Categorical features R2

Luette_bifide 0.38
Palais_ogival 0.51
Signe_du_pouce 0.81
Signe_poignet 0.79
Malocclusion_dentaire 0.39
Degre_ext_des_coudes 0.45
Ectopie 0.60
Pectus 0.35
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Conclusion

Comparison of the generative models

CVAE

I better reconstruction of the full joint
distribution

I requires extra computation to
compute the probabilities

I a single training for all the variables

MICE with PNN

I better reconstruction of the
conditional distributions

I straightforward computation of the
probabilities

I multiple trainings for all variables

Perspectives
Dynamic calibration of the threshold probabilities according to the saturation state
and the center ressources.
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MICE with probabilistic neural network

Joint distribution with cycle 2 MICE

x | xc ∼
∫
X

d∏
i=2

p
(1)
i (x′i | xc)

× p(2)1 (x1 | x′−1, xc)p(2)2 (x2 | x1, x′−2, xc)...p(2)d (xd | x−d, xc)λ(dx′)

Neural networks as elementary univariate probabilistic models

I for continuous variables: p(k)i (xi | x′) = N (xi;µ(x
′; θik), σ(x

′; θik)
2)

I for categorical variables: p(k)i (xi | x′) = Cat(xi; softmax(f(x′; θik)))

Properties: analytical marginalization
In this setting, all conditional and marginal distributions can be approximated by
Gaussian mixtures.
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