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Marfan and Related Syndromes.

Main genetic tissue disorders

» Marfan syndrome
(prevalence ~ 1 in 10,000)

» Loeys-Dietz syndrome
» Ehlers-Danlos syndrome

Cardiovascular Risks
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Typical journey of a patient in France before being diagnosed with
Marfan

Prophylactic treatment for aortic dissection

There are different levels of risk for aortic dissection according to the mutation and
the phenotype of the patient.

» for high-risk patients: surgery, elective aortic root replacement

» for moderate-risk patients: pharmacological treatment, S-blockers.
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» for high-risk patients: surgery, elective aortic root replacement
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Suspicion of
Marfan ?

Consultation with a
local physician

yes

Eligibility for
genetic sequencing ?

no

Multidisciplinary analyses
at the closest Marfan center
cardio, ophtalmo, skelettal

yes

no

Diagnostic :

Min 6 months later
which mutation
which treatment
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Decision aid tool for screening patients
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Decision aid tool for screening patients

Decision aid tool Decision aid tool

Diagnostic :
in less time
which mutation
which treatment

: . sroba > 1 Multidisciplinary analyses
Consultation with a  Proba>po | oo =00 Marfan conter

local physician cardio, ophtalmo, skelettal

proba > pq

proba < pg proba < p;

Objective
Design a decision aid tool for the two steps of the patient pathway:

> outside the specialized centers: help local physicians decide whether to
refer a patient to a reference center

» within the specialized centers: personalize the set of tests based on a
patient’s characteristics
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Data description

Cohort description (Bichat hopsital,
1600 Paris)

o > 3,982 patients
» 19 clinical variables
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morphological features
cardiovascular features
ophthalmic features
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P> 5 genetic categories:
BN control Other TGFBR FBN1, TGFBR, Other, No, Control.

mutation categories

Data type and missingness
» 20 columns in total: 8 continuous, 12 categorical;

» high missing rate: only 17% of the lines are complete.
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From a classifier to a generative model
A first approach: screening as a classification problem

Learn the conditional distribution P(category | xg) for all xg, where S is a subset
of the observed variables.
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A first approach: screening as a classification problem

Learn the conditional distribution P(category | xg) for all xg, where S is a subset
of the observed variables.
Problem: P(category = FBNI | age = 30, height = 1m80) = 0.55 !l

Solution: Prior distribution P on the mutation categories
category ~ 0.9999 dcontrol + €1 OFBN1 + €2 Ono + €3 Oother + €4 OTGFBR

Unknown phenotype distribution p
The phenotype is represented by a vector z € X C RY.

x | age, sex, category ~ p(z | age, sex, category)\(dx)

where ) is a measure on X.
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From a classifier to a generative model

A classifier given by Bayes’ theorem

p(z | age, sex, cat = ¢)P(cat = ¢)

P(cat = =
(cat = c | o, age, sex) > o p(z | age, sex, cat = c’)P(cat = c’)
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Requirements for the generative model

» handle tabular data (continuous and categorical variables)

» deal with high missing rate in the data

> be able to evaluate the probability of a given phenotype, and all the
conditional distribution probabilities
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From a classifier to a generative model

A classifier given by Bayes’ theorem

p(z | age, sex, cat = ¢)P(cat = ¢)

P(cat = c | x, age, sex) =
( | @, age, sex) Yo p(x | age, sex, cat = ¢/)P(cat = ¢/)
Requirements for the generative model

» handle tabular data (continuous and categorical variables)

» deal with high missing rate in the data

> be able to evaluate the probability of a given phenotype, and all the
conditional distribution probabilities

Two generative paradigms explored
» Conditional Variational Auto-Encoder (CVAE) by Vesna

» Chained Equations probabilistic neural networks (inspired from MICE) by
Antonin
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Reconstruction performances and examination recommender

Reconstruction R? of MICE generative model

Variables R?

Span 0.99

Size 0.95

Weight 0.73

Ascending aorta | 0.98

Sino-tubular 0.99 Definition of the reconstruction error
Valsalva sinus 0.77

Aortic arch 0.95 R2_1_ error of the model
Annulus 0.43 baseline error
Thumb sign 0.56

Wrist sign 0.54

Ectopia 0.18

Bifid uvula 0.15

Ogival palate 0.22

Pectus 0.16

Elbow extension | 0.07
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Recommendation of the next exam by entropy minimization

Given partial observations xg of a patient (S C [1,d]), the next exam to be
conducted is the one minimizing the conditional entropy:

¢* = argmin E [ent(cat | xg, z¢, z¢)]
¢S

where ent(cat | xg, x¢, z.) = — ZP(cat =c|xg,xp,x.)]logP(cat = c | xg, x4, xc)

Cc
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Recommendation of the next exam by entropy minimization

Example
E [ent(cat | age = 30, sex = M, span)] < E[ent(cat | age = 30,sex = M, V. sinus)]
but E [ent(cat | age = 10, sex = M, span)| > E[ent(cat | age = 10,sex = M, V. sinus)]

L] ® Control
60 L ® FBN1L

Valsalva sinus

age age
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Conditional VAE
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Reonsiucted ouput Preprocessing and data splitting:

Fill missing values (NA) with 0

Create a mask for missing values (observed =
1, unobserved = 0)

Use StandardScaler on numerical data
Apply One Hot Encoding for categorical data

Split data into training, validation, and test
subsets

Model setup and training:

KL Loss Over Epochs
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Loss: Reconstruction (continuous &
categorical) + KL loss

Annealing KL loss: Beta starts at 0, increases
to 0.1

600 epochs of training

Uses Gumbel-softmax for categorical variables
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CVAE Results

Numerical features R?

Anneau 0.79

Sinus_ de_ valsalva 0.83

Jonction _sino_tubulaire | 0.78

Aorte_ascendante 0.79

Crosse_aorte 0.82

Taille 0.91

Poids 0.79

Envergure 0.72
Categorical features R?

Luette bifide 0.38 e dopevee e —
Palais_ogival 0.51 o et - ot
Signe du_pouce 0.81 0 w0
Signe poignet 0.79 “ =
Malocclusion _dentaire 0.39 3“" -
Degre ext des_coudes | 0.45 w0 -
Ectopie 0.60 0 w0 | I I
Pectus 0.35 % 0 - ; e eematm
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Conclusion

Comparison of the generative models

CVAE MICE with PNN
» better reconstruction of the full joint P> better reconstruction of the
distribution conditional distributions
» requires extra computation to » straightforward computation of the
compute the probabilities probabilities
» a single training for all the variables » multiple trainings for all variables

Perspectives

Dynamic calibration of the threshold probabilities according to the saturation state
and the center ressources.
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MICE with probabilistic neural network

Joint distribution with cycle 2 MICE
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MICE with probabilistic neural network

Joint distribution with cycle 2 MICE

d
T | @ N/ sz(l)(x; | zc)
X =2

x PP (@1 | 21, 2e)p$ (32 | 21,79y ) PP (@a | T—as Te)A(d)

Neural networks as elementary univariate probabilistic models
» for continuous variables: pl(.k) (z; | ') = N (m5; u(2'; 0i1), o (25 031,)?)

» for categorical variables: pz(.k) (x; | 2) = Cat(a;; softmax(f(a';0;)))
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MICE with probabilistic neural network

Joint distribution with cycle 2 MICE
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Neural networks as elementary univariate probabilistic models
O (@i | @) = N wla's 03), /('3 0)?)
Z(-k) (x; | ') = Cat(zy; softmax(f(z'; 0;1)))

» for continuous variables: p

» for categorical variables: p

Properties: analytical marginalization

In this setting, all conditional and marginal distributions can be approximated by
Gaussian mixtures.
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